Molecular Dynamics Simulations of Amyloid β -Peptide (1-42): Tetramer Formation and Membrane Interactions
نویسندگان
چکیده
منابع مشابه
Dimer Formation Enhances Structural Differences between Amyloid β-Protein (1–40) and (1–42): An Explicit-Solvent Molecular Dynamics Study
Amyloid β-protein (Aβ) is central to the pathology of Alzheimer's disease. A 5% difference in the primary structure of the two predominant alloforms, Aβ(1-40) and Aβ(1-42), results in distinct assembly pathways and toxicity properties. Discrete molecular dynamics (DMD) studies of Aβ(1-40) and Aβ(1-42) assembly resulted in alloform-specific oligomer size distributions consistent with experimenta...
متن کاملUnfolding of the Amyloid β-Peptide Central Helix: Mechanistic Insights from Molecular Dynamics Simulations
Alzheimer's disease (AD) pathogenesis is associated with formation of amyloid fibrils caused by polymerization of the amyloid β-peptide (Aβ), which is a process that requires unfolding of the native helical structure of Aβ. According to recent experimental studies, stabilization of the Aβ central helix is effective in preventing Aβ polymerization into toxic assemblies. To uncover the fundamenta...
متن کاملReplica exchange molecular dynamics simulations of amyloid peptide aggregation.
The replica exchange molecular dynamics (REMD) approach is applied to four oligomeric peptide systems. At physiologically relevant temperature values REMD samples conformation space and aggregation transitions more efficiently than constant temperature molecular dynamics (CTMD). During the aggregation process the energetic and structural properties are essentially the same in REMD and CTMD. A c...
متن کاملMolecular Dynamics Simulation of Amyloid β Dimer Formation
Recent experiments with amyloid-β (Aβ) peptide suggest that formation of toxic oligomers may be an important contribution to the onset of Alzheimer’s disease. The toxicity of Aβ oligomers depends on their structure, which is governed by assembly dynamics. Due to limitations of current experimental techniques, a detailed knowledge of oligomer structure at the atomic level is missing. We introduc...
متن کاملCu2+ Affects Amyloid-β (1–42) Aggregation by Increasing Peptide-Peptide Binding Forces
The link between metals, Alzheimer's disease (AD) and its implicated protein, amyloid-β (Aβ), is complex and highly studied. AD is believed to occur as a result of the misfolding and aggregation of Aβ. The dyshomeostasis of metal ions and their propensity to interact with Aβ has also been implicated in AD. In this work, we use single molecule atomic force spectroscopy to measure the rupture for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2016
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2016.08.001